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ABSTRACT  
The Brewster’s (polarization) angle of reflection in optics is well understood and leads to 
distortion, including polarization filtering, of reflected waves. Further, the values of the 
Brewster’s angle (a zero crossing in amplitude) are closely related to the contrast in physical 
properties across the reflecting interface. I investigate elastic analogues to the optical Brewster’s 
angle for the case of incident seismic shear waves at a reflecting interface. Both optical (light) 
and elastic shear waves are characterized as transverse waves, and both are subject to 
polarization distortion upon reflection. For this exploratory study, I limit the seismic case to 
situations of only two reflected or transmitted waves where one of the waves vanishes:   1.) SH-
SH reflection-refraction across a solid-solid interface where the reflected SH wave vanishes and 
2.) SV-P reflection (mode conversion) at a free interface where the reflected SV wave vanishes.  
In the optical case, the rays defining the refracted and reflected waves at the Brewster’s angle are 
at 90° to each other. In the shear-wave examples, the reflected and refracted SH waves are 
normal to each other only if there is no density contrast. For the free surface, the rays for the 
incident SV and reflected P waves are at right angles only for a Poisson’s solid, λ = µ . 
Understanding these geometric relations should improve our intuitive insight into reflection, 
refraction and mode-conversion processes for P, SV and SH waves and improve interpretation of 
contrasts in elastic properties, including anisotropic conditions.  Further investigations into 
characterizing contrasts in elastic properties through reflection/refraction/mode-conversions 
processes are continuing. 
 

INTRODUCTION 
 

All light (EM) waves are transversely polarized and thus share some propagation properties 
with elastic shear waves. In particular, optical waves reflecting from an interface will experience 
changes in their polarization upon reflection. This effect may be beneficial in addressing 
propagation constants, or it may be harmful in that it distorts the polarization of the reflected 
wave. Here we consider the elastic analogy of the Brewster’s (or polarization) angle for light 
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waves and address differences and similarities in the case of seismic (elastic) waves. We attempt 
to identity and isolate wave properties associated with the elastic Brewster’s angle jB for incident 
shear waves and provide some physical insight into seismic wave properties and the contrasts in 
elastic properties controlling them.   

Brewster’s angle (polarization angle) occurs for light reflecting from an interface such as air 
over a glass plate. This angle may be defined as the angle—for a particular polarization—where 
energy is entirely transmitted into the refracting medium, and thus has zero reflectivity. The 
polarization where this occurs, in terms of the nomenclature used in seismology, is the SV 
polarization—or transverse polarization in a plane normal to the reflecting interface. Figure 1, 
from a basic optics textbook, illustrates the concept. If the incident energy is arbitrarily polarized 
with components in both the equivalent SH and SV polarization, there is no reflection of the SV 
component. Thus, an arbitrarily polarized incident wave will result in a purely SH polarized 
reflected wave. Further, the physics of optical wave propagation requires that the angle (φ +φ ' ) 
between the transmitted and reflected ray will always be 90°. This 90° angle (The polarization of 
the two light waves are orthogonal) results in the incidence Brewster’s angle being described by: 
jB = tan

−1(υ1 /υ2 )  where υ1  and υ2  are the speed of light in the upper and lower media, 
respectively. This reflection relation has a similarity to the υ1  and υ2  critical refraction angle 
(for υ1 >υ2  ) ic = sin

−1(υ1 /υ2 ) , and shows how the Brewster’s jB  angle approaches ic  as υ1 /υ2  
increases. If υ2 < υ1 , there is no critical angle.  

 
Figure 1.  Optical polarization by reflecting and refraction  (From Jenkins and White, 1957). 

 
THEORY and METHOD 
 
SH-SH 
 

Perhaps the geometrically simplest analogy to the optical reflection process is the SH-SH 
reflectivity.  Note that the SH wave does have a zero-crossing at relatively modest angles of 
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incidence.  In the SH elastic case, the incident, reflected and transmitted SH waves all maintain 
the same polarity (normal to the vertical plane) for all propagation angles.  For the case where 
the reflected wave vanishes ( jB , the elastic Brewster’s angle) we need only consider the 
transmitted SH wave.  Aki and Richards (2002) do provide a relation for the SH-SH reflectivity: 

 

RSH−SH = ρ1β1 cos j1 − ρ2β2 cos j2
ρ1β1 cos j1 + ρ2β2 cos j2

                                                   (1) 

 
where ρ1  and ρ2  are the density in the upper and lower layers,  β1  and β2  are the shear-wave 
velocities in the upper and lower layers and j1  is the angle of incidence (and reflection) and j2  
is the angle of refraction.  For RSH−SH = 0 , we have no reflection, and thus j1  will be indicated 
by jB , the elastic Brewster’s angle.  At this angle, we can set the numerator in Equation 1 to 0 
(because the denominator never vanishes), and we have a relation: 
 

sin2 jB =
Z2
2 / Z1

2( )−1
Z2
2β2

2( ) / Z12β12( )−1                                                    (2) 

 
where Z is the shear impedance, ρβ . This is an equation very similar to the purely acoustic case, 
and has some similar consequences. Basically, for increases or decreases in both the elastic 
impedance (which is dependent upon velocity) and the seismic velocity, there is always a real 
Brewster’s angle.  A summary of this result is shown in Figure 2, where the horizontal axis is the 
Brewster’s angle and the vertical axis is the contrast in shear velocity, β2 / β1 .  Each trace of the 
plot is for an individual density contrast, ρ2 / ρ1 . Interestingly, for no density contrast  
( ρ2 / ρ1 =1 ), the relation between the Brewster’s angle matches that of the optical case, 
tan−1( jB ) = β1 / β2 .  For this case, just like the optical case, the angle between the refracted ray 
and the reflected (zero amplitude) ray is 90°. This is true even though the polarization of the 
particle motion associated with all the rays is universally unchanged.  What does change is the 
direction of the orientation of the spatial derivative defining the strain associated with the shear-
wave propagation. Note that in Figure 2, the range in values of Brewster’s angle for no density 
contrast is from about 35° to 55° for the +/–25% range in velocity contrast. For a +/–10% 
velocity contrast, the relatively narrow range in jB  is only 40°–50°.  Density contrasts do expand 
this range somewhat. Nonetheless, we do see rather restricted ranges in possible values of jB .  
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Figure 2.  Brewster’s angle vs. velocity contrast for SH-SH waves.  The individual lines are for 

various density contrasts r2/r1. For no density contrast (r2/r1 = 1), the angle of reflection is 
normal to the angle of reflection (tan-1 jB = b1/b2) —as is the case for optical waves. 

 
SV-SV and SV-P 
 

In the elastic case of a seismic SV wave interacting with a solid/solid boundary, there are 
four resultant waves, and thus the situation is far more complex. This result occurs because of 
mode conversion from SV waves upon both reflection and transmission to P-waves. Because the 
P waves have faster propagation velocities than the SV-waves, there will always be critical 
angles (up to three) for incident SV waves. The existence of these critical angles may have 
significant effects on the reflected and transmitted waves. One of the motivations in addressing a 
physical insight of the Brewster’s angle phenomena is to expand our understanding of the 
observation that the value of angle jB  for an incident SV wave is, for most contrasts in P- and S-
impedances, very nearly constant (Krohn, 1988; Lyons, 2006; and Campbell and Tatham, 2011). 
Further, the sensitivity of this angle to contrasts in physical properties, as small as the variations 
may be, could prove useful in the interpretation of many rock properties, including anisotropy. 
 

FREE SURFACE 
 

To address the vanishing SV case, similar to the optical case, we consider in incident SV 
wave reflecting at a free interface. For the free-air case, there is no transmitted energy, but there 
are two reflected waves, SV and P. We consider the case where the reflected SV energy is zero, 
for the incidence angle jB , all the incident SV energy is reflected in the mode-converted P-wave. 

(Degrees)	
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This is analogous to the optical case where there are only two possible waves—with one being 
zero energy.  This also relates to the SH-SH case where no reflected shear-wave energy exists. 

Further, by considering the internal reflections at a free surface, the dependence on density in 
the reflection coefficients disappears. In addition, in the optical case, the speed of light in the 
refracting medium is usually lower than in air, so there are no critical angle effects. In the elastic 
case, the P-wave velocity a is always greater than β, the shear-wave velocity; thus there is always 
an internal critical angle associated with the internally refracted P-wave. This adds an additional 
complexity to the seismic situation. In addition, unlike the solid/solid case, the free surface 
represents a very strong ‘contrast’ in elastic properties and density, and may represent a rather 
extreme case compared to the solid/ solid case. Nonetheless, the simplicity of just two possible 
waves and boundary conditions, as well as the independence of density, offer an opportunity to 
focus on some of the physical interactions involved and provide preliminary insight into the 
fundamental processes.  

 

 
 

Figure 3. Reflection of a mode-converted SV-P wave at a free surface.  Note particle motion displace-
ments dus and dup for SV & P waves and g, the angle between the dus and dup displacement 
vectors. 

 

Figure 3 illustrates this simple free-surface geometry, including the definition of the angle 
between the polarizations of the particle displacement of the incident SV and reflected P-waves. 
For the optical case, the angle between the refracted and reflected rays is 90°, which is the same 
as γ= 90° for the polarizations of the light. This is not true for the elastic case. An example of an 
SV-SV reflection coefficient from a free surface of a Poisson solid (α/β = √3) is shown in  
Figure 4. Note that there are two angles (30° and 34°) where the SV reflection vanishes. The 
larger angle is very close to the critical angle, 35°. Interestingly, for this case of a Poisson solid, 
 γ = 0. We will consider a full range of values of Poisson’ s ratio and examine the interactions 
between jB . 
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Figure 4.  Reflection amplitudes at free surface for an SV wave propagating in a Poisson’s solid.  
After Cerveny (2001) 

Another difference between the optical and free-surface elastic case is the polarization of the 
waves themselves. For the elastic case at jB, the energy in the transverse polarization of the 
incidence SV wave is entirely transferred to the longitudinal polarization associated with the 
reflected P-wave. As mentioned, the angle between these two (SV & P) polarizations is generally 
not zero. Aki and Richards (2002) do provide a relation for the SV-SV reflection coefficient: 

 

RSV−SV =

1
β 2 − 2p

2⎛
⎝⎜

⎞
⎠⎟

2

− 4 p2 cos i
α

cos j
β

1
β 2 − 2p

2⎛
⎝⎜

⎞
⎠⎟

2

+ 4 p2 cos i
α

cos j
β

                                              (3) 

where i and j are the ray angles for P and S waves and  p, the ray parameter, = sin i / a  =  sin j / b  
For Rsv-sv = 0, we can set the numerator to zero (because the denominator never vanishes),and 
solve for jB. The solution is a cubic in Sin2 jB, consistent with the possibility of more than one 
root. The result of calculating jB is plotted as a function of a/b in Figure 5. In this case, we find 
two real values of jB and only a limited range of values of a/b where the jB exists: √2 < a/b < 
~1.76. Significantly, this upper value is greater than √3, thus probably not related to the 
simplicity of a Poisson solid where l = µ. The angle jB at this limit point is about 32°. For the 
larger values of jB (> 34°), the second Brewster’s angle approaches the critical angle and merges 
with the critical angle at a/b = √2.  Also included in Figure 5 (insert)  is the variation in g  for the 
range of 26 to about 42 where there is a zero crossing of the SV-SV reflection. The range in is 
fairly large, -30° to over + 30°. 
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Figure 5. Angle of incidence j where the reflectivity Rsv-sv of the reflected SV polarized shear wave 
from a free-surface interface vanishes, as a function of α  /β .  Also included is γ  for the range of j 
where there is a zero crossing in Rsv-sv (only P-wave reflected).  

Unlike the optical case, there is not a simple relation between jB and i. We did derive a 
Brewster-like expression in terms of i and jB: 

 

i = sin−1 1− cos2 jB
cos2 jB

⎛
⎝⎜

⎞
⎠⎟
tan2 jB                                                    (4) 

 
The relation of I withα / β is included in terms of α / β = sin i / sin jB . 
 
DISCUSION  
 

Note that for values of α / β  > ~1.76, there is no polarity reversal for the reflected SV wave, 
and hence no associated Brewster’s angle.(Figure 5) In the case of a solid/solid interface, there is 
always a change in the polarity of a reflected shear wave between normal and grazing incidence 
for an increase in the shear wave impedance, and thus there is always a zero-crossing associated 
with the wave. For very large velocity contrasts, however, this angle may become complicated 
with one of three possible critical angles. Further, for decreases in shear impedance less than 
about 20%, there is nearly always a zero crossing polarity of the SV wave. Thus, for most 
situations of a solid/solid interface, there is an elastic Brewster’s angle associated with incident 
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SV waves. In this sense, the extreme ‘contrasts’ of the free surface model and the limited 
occurrences of Brewster’s angle do not fully represent an analogue for the solid/solid model. The 
simplicity of the small number of waves and no contrast in density, however, does allow us to 
examine individual angles more thoroughly. One further approach to increasing our insight to 
reflection processes, in both the free surface and solid/solid cases, is to address the boundary 
conditions directly. The boundary conditions at the free surface require that the total traction at 
the surface resulting from the sum of the incident and reflected waves be zero. We say that the 
angle jB of the incident SV wave is such that the reflected SV wave has zero amplitude. This 
means that the total traction on the free surface due to the combination of the incident SV wave 
and the converted P-wave must be zero. In the same way, when the incident SV wave is at 
normal (j=0) incidence, the combination of the incident and reflected SV waves causes the 
traction on the free surface to be zero because there is no converted P-wave at normal incidence 
angle.  Here, we have only addressed incident SV waves.  In many cases, there are indeed elastic 
Brewster’s angles associated with incident P-waves, but there is not the same ‘certainty that they 
occur as there is with the SV wave. Levin (1986), considering discussions of AVO effects and 
zero-crossings for Type I and II gas sands, does address the Brewster’s angles for P-P 
reflectivity. He shows two values for jB, where it exists, for several combinations in velocity and 
density contrasts across a solid/solid interface—not unlike the result we observe in Figure 5 for 
the free surface case. A brief perusal of the acoustic literature revealed publications of elastic 
Brewster’s angle studies for incident acoustic (P-) waves. They included studies of solid/solid 
and solid/fluid interfaces and cases of anisotropy and viscoelasticity. Thus, this direction is not 
without some precedence. The missing element appears to be some intuitive insight into what 
physical processes occur at the reflecting boundaries. The free surface case, as extreme as it is, 
offers very simple geometry to attack this issue—but we must not lose sight of the more complex 
solid/solid interface. 

 
CONCLUSIONS 

To date, we have identified geometrical and physical aspects of the SH-SH reflectivity 
and SV-P reflection-transmission-mode conversion processes that provide a focus for more 
detailed investigation into the subject interactions.  The SH-SH case is almost a stand-alone 
condition.  Some results to note (in Figure 5) for the free surface case are that for a minimum 
meaningful value of α/β of √2, there is a zero crossing (Brewster’s angle jB) at 26°. A second 
zero crossing in SV reflectivity, jB = 45°, is coincident with the critical angle for this particular 
velocity ratio. The angle γ between the polarization of the incident SV wave displacement vector 
and the reflected P-wave displacement is about -27°. At the second value of jB, coincident with 
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the critical angle, γ = +45°. As the velocity ratio increases, there are two values of jB, although 
the second zero crossing is very close to the critical angle. At α/β = √3 (a Poisson solid where 
λ=µ), the first value of jB = 30°, and γ = 0°. In this case, the incident SV and reflected P rays are 
at 90°. The second jB is at 34°, and γ = 16°. As α/β increases in value above √3, associated with a 
Poisson solid, we reach a limit in α/β of 1.76, above which there is no zero crossing in the SV 
reflection. At this point, jB = 32° and γ = 11°. This value of α/β is well within the range of 
common sedimentary rocks. Keep in mind, however, that this is free interface, with its associated 
limits in representing subsurface reflections. Additional efforts will include developing a deeper 
insight into the significance of the angle γ, the nature of the boundary conditions on these effects 
and extension to full solid/solid interfaces. 
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